Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38668354

RESUMEN

Compounds of natural or synthetic origin present in personal care products, food additives, and packaging may interfere with hormonal regulation and are called endocrine-disrupting chemicals (EDCs). The thyroid gland is an important target of these compounds. The objective of this study was to analyze public data on the human thyroid transcriptome and investigate potential new targets of EDCs in the embryonic and adult thyroid glands. We compared the public transcriptome data of adult and embryonic human thyroid glands and selected 100 up- or downregulated genes that were subsequently subjected to functional enrichment analysis. In the embryonic thyroid, the most highly expressed gene was PRMT6, which methylates arginine-4 of histone H2A (86.21%), and the downregulated clusters included plasma lipoprotein particles (39.24%) and endopeptidase inhibitory activity (24.05%). For the adult thyroid gland, the most highly expressed genes were related to the following categories: metallothionein-binding metals (56.67%), steroid hormone biosynthetic process (16.67%), and cellular response to vascular endothelial growth factor stimulus (6.67%). Several compounds ranging from antihypertensive drugs to enzyme inhibitors were identified as potentially harmful to thyroid gland development and adult function.

2.
Toxicol Sci ; 197(1): 1-15, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37788136

RESUMEN

This rodent (Wistar rats) study examined reproductive effects of in utero/lactational exposure to a mixture of 6 antiandrogenic phthalates (PMix): diisobutyl phthalate, di-n-butyl phthalate, diisopentyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl phthalate, and diisononyl phthalate. The PMix was defined based on exposure data from pregnant women in Brazil. Experimental groups were established by extrapolating the estimated human dose to rats (0.1 mg/kg/day), followed by up to 3 additional doses corresponding to 5, 1000, and 5000 times the starting rat dose: 0 (control), 0.1, 0.5, 100, and 500 mg/kg/day. The fetal experiment assessed gestational exposure effects on fetal gonads, whereas the postnatal experiment evaluated reproductive parameters in males and females after in utero and lactational exposure. Prenatal exposure decreased fetal testicular testosterone production at 0.5 and 500 mg/kg/day. PMix 500 also reduced mRNA expression of steroidogenesis-related genes, upregulated transcript expression of the retinoic acid-degrading enzyme Cyp26b1, and increased multinucleated gonocytes incidence in fetal testes. Postnatal assessment revealed antiandrogenic effects at the highest dose, including reduced anogenital distance, nipple retention, and decreased weight of reproductive organs. Early puberty onset (preputial separation) was observed at the lowest dose in males. In contrast, females did not show significant changes in fetal and adult endpoints. Overall, the PMix recapitulated early and late male rat phthalate syndrome phenotypes at the highest dose, but also induced some subtle changes at lower doses, which warrant confirmation and mechanistic assessments. Our data support the use of epidemiologically defined mixtures for exposure risk assessments over traditional toxicological approaches.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Humanos , Adulto , Ratas , Embarazo , Masculino , Femenino , Animales , Ratas Wistar , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/metabolismo , Reproducción , Testosterona/metabolismo , Testículo , Dietilhexil Ftalato/toxicidad , Dibutil Ftalato/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo
3.
Environ Pollut ; 334: 122132, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37414124

RESUMEN

The increased prevalence of human infertility due to male reproductive disorders has been linked to extensive exposure to chemical endocrine disruptors. Acrylamide (AA) is a compound formed spontaneously during the thermal processing of some foods that are mainly consumed by children and adolescents. We previously found that prepubertal exposure to AA causes reduced sperm production and functionality. Oxidative stress is recognized as the main cause of reduced sperm quality and quantity. In this sense, our objective was to evaluate the expression and activity of genes related to enzymatic antioxidant defense, nonprotein thiols, lipid peroxidation (LPO), protein carbonylation (PC) and DNA damage in the testes of rats exposed to acrylamide (2.5 or 5 mg/kg) from weaning to adult life by gavage. For the AA2.5 and AA5 groups, there were no alterations in the transcript expression of genes related to enzymatic antioxidant defense. The enzymatic activities and metabolic parameters were also not affected in the AA2.5 group. For the AA5 group, the enzymatic activities of G6PDH and GPX were reduced, SOD was increased, and protein carbonylation (PC) was increased. Data were also evaluated by Integrate Biomarker Response (IBRv2), a method to analyze and summarize the effects on biomarkers between doses. The IBRv2 index was calculated as 8.9 and 18.71 for AA2.5 and AA5, respectively. The following biomarkers were affected by AA2.5: decreased enzymatic activities of G6PDH, SOD, and GPX, increased GST and GSH, increased LPO and PC, and decreased DNA damage. For AA5, decreased enzymatic activities of G6PDH, GST, CAT and GPX, increased SOD and GSH, increased PC, and decreased LPO and DNA damage were observed. In conclusion, AA exposure during the prepubertal period causes imbalances in the testicular enzymatic antioxidant defense, contributing to the altered spermatic scenario in the testes of these rats.


Asunto(s)
Antioxidantes , Testículo , Humanos , Niño , Masculino , Ratas , Animales , Adolescente , Antioxidantes/metabolismo , Carbonilación Proteica , Testículo/metabolismo , Peroxidación de Lípido , Acrilamida/toxicidad , Acrilamida/metabolismo , Semen/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Biomarcadores/metabolismo , Glutatión/metabolismo
4.
Environ Pollut ; 334: 122216, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37479171

RESUMEN

The significant increase in glyphosate-based herbicide (GBH) use raises concerns about residues in the environment and food, potentially jeopardizing human health. The involvement of GBHs in the increased incidence of thyroid disorders is speculated, since glyphosate has been linked to an increased risk of thyroid disease in farmers. In this sense, this study aims to investigate the potential effects of low levels of GBH exposure (0, 0.5 or 5 mg/kg) from weaning (postnatal day PND23) to adult life (PND60 and PND90) in male Wistar rats on hypothalamic-pituitary-thyroid (HPT) axis function. The serum levels of T4 were increased. The hypothalamus showed reduced expression of Dio2, Thra1, and Thra2. The pituitary showed reduced expression of Mct8 and Dio2 and increased expression of Thra1. The thyroid showed increased expression of Tshr and Thra1. The heart showed increased expression of Mct8 and Myh6. The liver showed reduced expression of Mct8 and Thra2 and increased expression of Thra1. In thyroid morphometry, a decrease in both follicular diameter and area and decreased follicular and colloid diameters and areas were observed. These results suggested that GBH may affect several steps of HPT axis regulation at the transcriptional level in an age-dependent manner and alter the morphometric parameters of the thyroid gland and TH synthesis, with potential repercussions in the TH-target organs.


Asunto(s)
Herbicidas , Glándula Tiroides , Ratas , Humanos , Animales , Masculino , Herbicidas/metabolismo , Ratas Wistar , Hipófisis , Glifosato
5.
Toxicol Appl Pharmacol ; 467: 116496, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001608

RESUMEN

Glyphosate is a nonselective and postemergent herbicide used to combat weeds in several crops, which raises concerns about risks to human health since residues are detected in urine, human milk, surface water and several types of food. Feces and urine are the major routes of elimination of glyphosate, making the kidney a sensitive target for the development of toxicity. In fact, farmers are at high risk of developing chronic kidney disease. In this sense, this study aims to investigate kidney function by measuring the serum levels of urea and creatinine, examining the histological morphology, and analyzing the mRNA expression of genes related to tubular transport of ions, urea and urates and the biomarker of kidney disease Kim1, and the levels of lead in the kidney in male Wistar rats orally exposed to low levels of glyphosate-based herbicide (GBH: 0, 0.5 or 5 mg/kg) from weaning to adult life by gavage. GBH0.5 showed reduced serum urea concentration, presence of tubulointerstitial swelling and mononuclear cell infiltration into the interstitium, increased gene expression of Kim1 and reduced gene expression of Slc14a1. GBH5 showed reduced serum urea and increased serum creatinine concentrations, tubulointerstitial swelling, interstitial fibrosis, and reduced expression of Trpm6 and Trpv5. Exposure to GBH did not affect the levels of Pb in the kidneys of animals. In conclusion, glyphosate at low doses may cause mild kidney damage. It is necessary to evaluate whether the long-term effects of this constant injury may contribute to the development of chronic kidney disease of uncertain etiology.


Asunto(s)
Herbicidas , Canales Catiónicos TRPM , Ratas , Animales , Humanos , Masculino , Ratas Wistar , Herbicidas/toxicidad , Riñón , Urea , Biomarcadores , Glifosato
6.
Toxicol Lett ; 369: 1-11, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35963426

RESUMEN

Isoflavones are phytoestrogens with recognized estrogenic activity but may also affect testosterone, corticosterone and thyroid hormone levels in experimental models. However, the molecular mechanisms involved in these alterations are still unclear. Isoflavones are present in soy-based infant formula, in breast milk after the consumption of soy by the mother and are widely used for the preparation of beverages consumed by toddlers and teenagers. In this sense, we proposed to investigate the effects of soy isoflavone exposure during the prepubertal period, a recognized window of sensitivity for endocrine disruption, over the hypothalamic-pituitary-testicular (HPT) axis. For this, 42 3-week-old male Wistar rats were exposed to 0.5, 5 or 50 mg of soy isoflavones/kg from postnatal day (PND) 23 to PND60. We evaluated body growth, age at puberty, serum concentrations of LH, FSH, testosterone and estradiol, and the expression of the transcripts (mRNA) of genes encoding key genes controlling the hypothalamic-pituitary-testicular (HPT) axis. In the hypothalamus, we observed an increase in Esr1 mRNA expression (0.5 and 5 mg). In the pituitary, we observed an increase in Gnrhr mRNA expression (50 mg), a reduction in Lhb mRNA expression (0.5 mg), and a reduction in Ar mRNA expression. In the testis, we observed an increase in Lhcgr mRNA expression (50 mg) and a reduction in Star mRNA expression (0.5 and 5 mg). The serum levels of LH (5 and 50 mg) and FSH (0.5 mg) were increased, while testosterone and estradiol were reduced. Puberty was delayed in all groups. Taken together, these results suggest that prepubertal consumption of relevant levels of soy isoflavones disrupts the HPT axis, causing hypergonadotropic hypogonadism and altered expression levels of key genes regulating the axis.


Asunto(s)
Hipogonadismo , Isoflavonas , Animales , Corticosterona , Estradiol/metabolismo , Hormona Folículo Estimulante , Gonadotropinas Hipofisarias/metabolismo , Humanos , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Isoflavonas/farmacología , Masculino , Fitoestrógenos/metabolismo , Fitoestrógenos/toxicidad , Pubertad , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Testosterona
7.
Biomed Pharmacother ; 140: 111448, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34130202

RESUMEN

Isoflavones are a group of secondary metabolites found in plants belonging to the class of phytoestrogens. These, because they have a chemical structure similar to the endogenous hormone 17ß-estradiol, act as endocrine disruptors over the different development window periods. This study aimed to evaluate male and female reproductive systems' responses when exposed to isoflavones during the development window. It is characterized as a bibliographic review, built after analyzing clinical and preclinical articles indexed in English, Portuguese, and Spanish published in the last ten years. The isoflavones, aglycone or glucosides, have essential therapeutic properties in the relief of postmenopausal symptoms in women, reduce the proliferation of cancers, in addition to being antioxidants. On the other hand, they can still behave in a similar way to 17ß-estradiol, binding to hormone receptors and acting as endocrine disruptors over the gestational period until pre-puberty, negatively affecting the development of the reproductive system. The effects on reproduction are not dose-response but are influenced by the type of isoflavone and period. There are variations in the serum concentration of hormones and action on their negative feedback on the hypothalamic-pituitary-testicular axis in males. Reproductive functions are also affected by spermatogenesis, such as decreased sperm count, lower reproductive performance, reduced litter size, low sperm production, and reduced seminal vesicle size. In females, puberty is reached later, irregular estrous cycle, reduced weight of the ovary, uterus, lower serum levels of estradiol and progesterone, reduced fertility, or interrupted fertility. At the end of the analysis of the selected publications, it can be concluded that despite the beneficial therapeutic effects in the face of pathologies, the unknown consumption of doses and types of isoflavones in food can damage the development and reproduction of individuals. Therefore, further studies must be carried out to elucidate the usual safe doses of the analyzed phytoestrogen. Greater control over insertion in foods targeted at pediatric consumers should be implemented until we have adequate safety.


Asunto(s)
Fertilidad/efectos de los fármacos , Isoflavonas/farmacología , Animales , Femenino , Hormonas/sangre , Humanos , Masculino , Fitoestrógenos/farmacología , Reproducción/efectos de los fármacos
8.
Front Endocrinol (Lausanne) ; 12: 627167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815286

RESUMEN

The increased incidence of thyroid diseases raises a series of questions about what the main predisposing factors are nowadays. If dietary restriction of iodine was once a major global health concern, today, the processes of industrialization of food and high exposure to a wide variety of environmental chemicals may be affecting, directly or indirectly, thyroid function. The homeostasis of hypothalamus-pituitary-thyroid (HPT) axis is finely regulated through the negative feedback mechanism exerted by thyroid hormones. Allostatic mechanisms are triggered to adjust the physiology of HPT axis in chronic conditions. Glyphosate and glyphosate-based herbicides are pesticides with controversial endocrine disrupting activities and only few studies have approached their effects on HPT axis and thyroid function. However, glyphosate has an electrophilic and nucleophilic zwitterion chemical structure that may affect the mechanisms involved in iodide oxidation and organification, as well as the oxidative phosphorylation in the ATP synthesis. Thus, in this review, we aimed to: (1) discuss the critical points in the regulation of HPT axis and thyroid hormones levels balance, which may be susceptible to the toxic action of glyphosate and glyphosate-based herbicides, correlating the molecular mechanisms involved in glyphosate toxicity described in the literature that may, directly or indirectly, be associated to the higher incidence of thyroid diseases; and (2) present the literature regarding glyphosate toxicity in HPT axis.


Asunto(s)
Exposición a Riesgos Ambientales , Glicina/análogos & derivados , Herbicidas/toxicidad , Enfermedades de la Tiroides/inducido químicamente , Enfermedades de la Tiroides/epidemiología , Glicina/toxicidad , Humanos , Incidencia , Prevalencia , Glifosato
9.
Reprod Toxicol ; 102: 1-9, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33766721

RESUMEN

Arsenic (As) is an endocrine disrupting chemical that can disturb the male reproductive system. In a previous study, it was suggested that testicular macrophages could display a role in endocrine disruption induced by As exposure. This work aimed to evaluate the effects of chronic As exposure in the testis function of Wistar rats and examine the participation of macrophage activation and inflammatory response in these processes. We examined gene expression of steroidogenic machinery and immunological markers by RT-QPCR, plasma testosterone concentrations, sperm count and morphology, and histomorphometrical parameters after 60-days exposure to 1 or 5 mg.kg-1.day-1 of sodium arsenite, combined or not with 50 µg.kg-1 of LPS administered one day before euthanasia. We have demonstrated that As exposure reduced the weight of androgen-dependent organs and induced changes in spermatogenesis, in particular at the highest dose. LPS and As co-exposure promoted a decrease in testosterone synthesis, but did not increase the overexpression of markers of macrophage activation seen in LPS-only rats. Our results suggest that As does not alter the testicular macrophage function, but under immunological challenges LPS and As can display a complex interaction, which could lead to endocrine disruption.


Asunto(s)
Arsenitos/toxicidad , Disruptores Endocrinos/toxicidad , Compuestos de Sodio/toxicidad , Testículo/efectos de los fármacos , Animales , Arsénico/metabolismo , Disruptores Endocrinos/metabolismo , Activación de Macrófagos , Masculino , Ratas , Ratas Wistar , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/metabolismo , Testosterona/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...